「ソフトウェアー・エンジニアリング」カテゴリーアーカイブ

ソフトウェアー関係の話題など・・

最近は、github にプッシュしてます~

RX72N Envision Kit の D2 オーディオを使う

RX72N Envision Kit で搭載された D2 オーディオ

RX72N Envision Kit には、デジタルオーディオ再生のデバイスが搭載されている。

現ルネサス製(インターシル)の D2-41051 で、I2S などのデジタル入力を内蔵 DSP などで処理して、最終的に PWM 出力する。

最初、このデバイス用のドライバーを書く必要があると思い、マニュアルをダウンロードして、初期化を実装する準備をしていた。
しかし、RX72N Envision Kit ユーザーズマニュアルがアップロードされ、中を読むと、

5.15.5 DAE-4 設定について
本ボードは既に I2S 経由で入力された PCM 音源を出力できる様に設定されています。

と書かれており、直ぐに使える事が判った。
※IPL 用 EEPROM が載っており、リセット時、初期化を行うようだ。

SSIE のドライバーを実装

RX72N には、I2S 通信用に SSIE インターフェースが載っている。
又、オーディオクロックとして、24.576MHz の発信器が載っている。
※この周波数は、48KHz のサンプリングに適した周波数となっている。
※ 24.576 MHz / (32 + 32) / 8 ---> 48KHz

また、内蔵クロックジェネレータが、PLL 方式で、周波数をプログラム出来るので、44.1KHz 用も出ると思ったが、48KHz のみのようだ。
なので、44.1KHz などの CD 音源の再生では、アップサンプリングして変換する必要がある。
厳密に行うのは、色々と面倒そうなので、簡易な方法で凌いでいる、そのうちより厳密な方法を行いたい。
※RX 内臓 DSP 命令を使う時が来たかもしれないw

最初「PCM」とあったので、16 ビットで出力していたが、アナログ出力は変化が無かった、色々調べて、24 ビットにしたら、出力される事が判った。
※現在の実装では 32 ビットにしている。(MSB ファーストなので、問題無いハズ)

最初、テストで「ノコギリ波」を出力していたが、出力波形が、思ったように出ない・・・

良く考えたら D2 デバイス内部で、FIR フィルタなどを通っているので、スパイク上の波形変化では、高い周波数成分が乗り、そのようになるだろう事が判った。
サイン波で実験したら、思ったようなアナログ出力が得られた。

オーディオ出力

RX72N Envision Kit には、PWM からアナログに変換するフィルタ回路がオペアンプで実装されている。
マニュアルには、

5.15.1 接続できるスピーカについて 接続できるスピーカについて
音声出力ジャックにはアンプ付きのスピーカを接続出来ます。アンプがない場合は 8Ωのスピーカも接続でき
ますが、イヤホン等インピーダンスの高い物は接続できません。

と書かれているが、意味が良く判らない、オペアンプは、かなり電流を流せるもののようだが、8オームをドライブできて、16や32オームをドライブ出来ないとは???
また、オペアンプには出力に100オームの制限抵抗があるので、なおさらだ・・・
実験的に、10オームくらいの抵抗を繋いでみたが、思った通り振幅が非常に小さくなる。
※少し怖いので、イヤホンは繋いでいない。

RCA 入力のアンプを接続して、普通に音が鳴っている。

※「D2-41051」には、複数の PWM チャネルがあるので、ランドに出しておいて欲しかった・・・

RX65N のコードを移植

RX65N Envision Kit で D/A 出力していた部分を、SSIE にするコードを追加して、音を聴いてみた。
厳密なヒアリングを行っていないが、普通に聞こえる。(12ビットD/Aより良いか、悪いか、何とも言えない)

コード中では、

#define USE_DAC

と

#define USE_SSIE

で切り替えるようにしている。

DAC 用には、

    volatile uint32_t   wpos_;

    /// DMAC 終了割り込み
    class dmac_term_task {
    public:
        void operator() () {
            device::DMAC0::DMCNT.DTE = 1;  // DMA を再スタート
            wpos_ = 0;
        }
    };

    typedef device::dmac_mgr<device::DMAC0, dmac_term_task> DMAC_MGR;
    DMAC_MGR    dmac_mgr_;

    uint32_t get_wave_pos_() { return (dmac_mgr_.get_count() & 0x3ff) ^ 0x3ff; }

    typedef device::R12DA DAC;
    typedef device::dac_out<DAC> DAC_OUT;
    DAC_OUT     dac_out_;

    typedef utils::sound_out<1024, 512> SOUND_OUT;
    SOUND_OUT   sound_out_;

    class tpu_task {
    public:
        void operator() () {
            uint32_t tmp = wpos_;
            ++wpos_;
            if((tmp ^ wpos_) & 64) {
                sound_out_.service(64);
            }
        }
    };

    typedef device::tpu_io<device::TPU0, tpu_task> TPU0;
    TPU0        tpu0_;

    void start_audio_()
    {
        {  // 内臓12ビット D/A の設定
            bool amp_ena = true;
            dac_out_.start(DAC_OUT::output::CH0_CH1, amp_ena);
            dac_out_.out0(0x8000);
            dac_out_.out1(0x8000);
        }

        {  // サウンドストリーム DMAC マネージャー開始
            uint8_t intr_level = 4;
            bool cpu_intr = true;
            auto ret = dmac_mgr_.start(tpu0_.get_intr_vec(), DMAC_MGR::trans_type::SP_DN_32,
                reinterpret_cast<uint32_t>(sound_out_.get_wave()), DAC::DADR0.address(),
                sound_out_.size(), intr_level, cpu_intr);
            if(!ret) {
                utils::format("DMAC Not start...\n");
            }
        }

        // 波形メモリーの無音状態初期化
        sound_out_.mute();
    }

SSIE 用には

    SSIE_IO     ssie_io_;
    SSIE_IO::SOUND_OUT& sound_out_ = ssie_io_.at_sound_out();

    void start_audio_()
    {
        {  // SSIE 設定 RX72N Envision kit では、I2S, 48KHz, 32/24 ビットフォーマット
            uint8_t intr = 5;
            uint8_t adiv = 24'576'000 / 48'000 / (32 + 32);
            auto ret = ssie_io_.start(adiv,
                utils::ssie_t::FORM::I2S,
                utils::ssie_t::D_NUM::_32, utils::ssie_t::S_NUM::_32, intr);
///             utils::ssie_core::D_NUM::_24, utils::ssie_core::S_NUM::_32, intr);
            if(ret) {
                ssie_io_.enable_mute(false);
                ssie_io_.enable_send();  // 送信開始
                uint32_t bclk = 24'576'000 / static_cast<uint32_t>(adiv);
                utils::format("SSIE Start: BCLK: %u Hz\n") % bclk;
            } else {
                utils::format("SSIE No start...\n");
            }
        }
    }

となっている。

発音は、sound_out オブジェクト(クラス)に対して行うので、シンプルとなる。
ssie_io クラス内で、sound_out クラスを持っていて、操作は、それを経由している、なので、外部に、sound_out オブジェクトの参照を出してある。
このような場合 C++ は本当に便利だ。

NESEMU_sample(ファミコン・エミュレータ)

NES エミュレータ(動画)

RX65N、RX72N で共有のソースとした。

NESEMU_sample

各ディレクトリに移動して「make」すればビルド出来る。
※まだ、RX72N Envision Kit の入手性が悪いが、ビルドしたバイナリーを置いてある。

操作には、ファミコン互換パッドが必要だ。
※近々に USB ジョイパッドに対応する予定でいる。

他に、SIDE_sample も動作を確認した(スペースインベーダーエミュレータ)

github のソースをクローンしている場合

RX72N の追加で、ソースコードは、非常に短いスパンで更新されている。
なので、ソースコードを利用している人は、アーカイブをダウンロードせず、git の操作で更新をした方が有益だと思う。

RX72N Envision Kit での開発(その1)

Arduino を使わないという選択

世の中、ほぼ Arduino 一択という状況になってしまったと言っても過言では無いです。
自分が考えるに、良い面と、そうではない面があると思います。

「良い面」は、非常に簡単に言うと、「敷居を極限まで下げた」と言えるのかもしれません。
アプリケーションを作るのに必要な知識だけでマイコンを動かせます。


Arduino は易しいですが、マイコンを独自で動かす事も実はそんなに難しくありません。

実際、「独自」にマイコンを動かして、「main」関数まで来るには、色々と、行わなければならない事や知識が必要です。
Arduino では、これらの知識は「不要」と分類されており、アプリケーションを作るユーザーが考える必要はありません。
※これは、マイコンが違っても、Arduino 環境下では、同じように使う事が出来ます。

Arduino は一応 C++ ですが、元が、AVR と言う 8/16 ビットマイコンからスタートした為、最新の C++ コンパイラを利用できません。
世の中にある、スケッチは、この制限により、C++ とは言えない物が多く、互換性を考えて、今でも、古いスタイルでプログラミングをしています。

自分も昔は、C 言語が主流で、C++ はオマケ程度でしたが、PC でアプリケーションを作るプロジェクトで仕事をした時、C++ を勉強しなおしました。
そこから、数十年、今では、C++ 以外でプログラムを作る事が苦痛になっています。
※ C++ は非常に難しい部分があるので、独学では限界があります、良い師と、時間が必要ですが、最近は、「勉強会」も頻繁に行われており、「学ぶ」には、かなりハードルが下がりました。
また、最高のコンパイラもフリーで利用出来ます。


組み込みマイコンでも、C++ を積極的に使いたいので、国産で、高性能なマイコンを探しました。
ARMが嫌いな訳では無く、単純に、日本人なのに、「わざわざ外国のマイコンを使うのはおかしいだろう」という思いがありました。
昔から、日立は好きで、H8やSHを良く使っていました、しばらくしてルネサスに統合されました。
最近は、RXマイコンを推しているようです、RXマイコンは多分三菱由来のマイコンと思いますが、非常に優れた、マイコンである事が直ぐに判りました。
開発環境も、gcc をサポートしており、十分実用になる事が判りました。

そこから C++ を積極的に利用した組み込みマイコン用フレームワークを整備して、現在に至っています。
※このフレームワークは、いくつかのプロジェクトで利用しています、その関係もあり、ライセンスを MIT にしています。

開発環境の整備

ルネサス社の E2 Studio は、無料版に制限(128Kバイトまでしかバイナリーを作れない)があり、CC-RX コンパイラでは、C++11、C++14, C++17 などの C++ ソースをコンパイルする事が出来ない為、独自にビルドした gcc-6.4.0 を使います。
※ルネサス社は、独自に、gcc-4.8 ベースの開発環境も用意していますが、4.8 系では、C++14, C++17 をコンパイルする事が出来ない。

C++11, C++14, C++17 はそれぞれ、2011 年、2014 年、2017 年に C++ 標準化委員会が策定した仕様を網羅したバージョンです。
年度が更新する(3年毎)度に、より良い機能が使えるようになっており、わざわざ古い仕様の C++ を使う理由は無いと思います。
※ C++17 は 2017 年の仕様です、今は 2020 年なので、ある程度「枯れて」いると言えると思います。

RX72N Envision kit の内蔵 E2-Lite を使って、マイコン内蔵フラッシュプログラムを書き換えするには、Windows 環境が必須となります。

コマンドラインによる開発環境を著しく敬遠する人がいますが、「慣れ」の問題であり、GUI 環境を覚えるよりハードルは低いと思われます。

MSYS2 を利用しています。

gcc のビルドに関しては、hirakuni45 github RX、又は gcc、g++を使ったルネサスRXマイコン開発を参照の事。

Renesas Flash Programmer v3 をインストールしてください。

ソースコードの編集には、VSCode が便利です、馴染みのテキストエディターが無いのなら(あっても)インストールお勧め。
※設定や、使い方は、ぐぐって~

ソースコードの取得

関係フレームワークなど一式を、github からクローンします。
※「D:/Git/RX」にクローンしています。

W10.~ % cd /d/Git
W10./d/Git % git clone git://github.com/hirakuni45/RX.git

他に「boost」が必要です。

W10./d/Git % pacman -S mingw-w64-x86_64-boost

FIRST_sample

FIRST_sample ディレクトリ、RX72N に移動します。

W10./d/Git ~ % cd RX/FIRST_sample
W10./d/Git/RX/FIRST_sample % cd RX72N

ソースコードをビルドします。

W10./d/Git/RX/FIRST_sample/RX72N % make

W10./d/Git/RX/FIRST_sample/RX72N % ls
led_sample.elf  led_sample.lst  led_sample.map  led_sample.mot  Makefile  release

ビルドされた「led_sample.mot」ファイルを、Renesas Flash Programmer で、RX72N Envision kit に書き込みます。

RX72N Envision kit USR LED が 0.25 秒間隔で点滅する。

Flash Programmer v3 の設定

  • PC と RX72N Envision kit の「ECN1」をマイクロUSBで接続します。
  • 電流不足になる場合、外部にACアダプタを接続する必要があります。
  • SW1 の 2 番をOFFにします。
  • 新規プロジェクトを作成し、RX72x を選択します。

  • E2 emulator Lite を選択
  • FINE を選択
  • 1,500,000 bps を選択

  • 供給しない を選択

  • リセット端子をHi-Z を選択

  • 接続出来たら、先ほどビルドしたファイルを選択して、書き込みます。

ソースコードを眺める

ソースコードは、複数のRXマイコン用に実装されており、「SIG_RX72N」が機種依存部分となっています。

#include "common/renesas.hpp"

namespace {

/// ベースクリスタルの定義
/// LED 接続ポートの定義
#if defined(SIG_RX71M)
    typedef device::system_io<12'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT0, device::bitpos::B7> LED;
#elif defined(SIG_RX72M)
    typedef device::system_io<12'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT0, device::bitpos::B7> LED;
#elif defined(SIG_RX72N)
    typedef device::system_io<16'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT4, device::bitpos::B0> LED;
#elif defined(SIG_RX64M)
    typedef device::system_io<12'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT0, device::bitpos::B7> LED;
#elif defined(SIG_RX65N)
    typedef device::system_io<12'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT7, device::bitpos::B0> LED;
#elif defined(SIG_RX63T)
    typedef device::system_io<12'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORTB, device::bitpos::B7> LED;
#elif defined(SIG_RX24T)
    typedef device::system_io<10'000'000, 80'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT0, device::bitpos::B0> LED;
#elif defined(SIG_RX66T)
    typedef device::system_io<10'000'000, 160'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT0, device::bitpos::B0> LED;
#elif defined(SIG_RX72T)
    typedef device::system_io<8'000'000, 192'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT0, device::bitpos::B1> LED;
#endif
}

int main(int argc, char** argv);

int main(int argc, char** argv)
{
    SYSTEM_IO::setup_system_clock();

    LED::OUTPUT();  // LED ポートを出力に設定

    while(1) {
        utils::delay::milli_second(250);
        LED::P = 0;
        utils::delay::milli_second(250);
        LED::P = 1;
    }
}

RX マイコンは、内部にクロックジェネレータがあり、起動した場合には、内部の発信器で、最低限の状態で起動します。
そこで、RX72N の動作を最高性能に切り替える為、フレームワークの助けを借ります。

    SYSTEM_IO::setup_system_clock();

この API を呼ぶ事で、RX72N は最大の 240MHz で動作します。

「SYSTEM_IO」は、以下のように定義されており、外部 16MHz のクリスタルを接続している設定です。

    typedef device::system_io<16'000'000> SYSTEM_IO;

240MHz の指定は、Makefile でされており、ソースをコンパイルする時に、定数を指定しています。
※「F_ICLK」の値

USER_DEFS   =   SIG_RX72N \
                F_ICLK=240000000 \
                F_PCLKA=120000000 F_PCLKB=60000000 F_PCLKC=60000000 F_PCLKD=60000000 \
                F_FCLK=60000000 F_BCLK=120000000

※これらの定数を使って、内部で、クロックジェネレータの設定を自動で行います。
※詳しくは、system_io.hppを参照の事。

LED の定義では、PORT テンプレートクラスにより、1ビットのポートとしています。
※この場合、PORT4 の B0 で、ボード上のユーザーLEDに接続されています。

    typedef device::PORT<device::PORT4, device::bitpos::B0> LED;

LED ポートを出力に指定します。

    LED::OUTPUT();  // LED ポートを出力に設定

LED ポートに「0」、「1」を送る。

        LED::P = 0;
...
        LED::P = 1;

0.25 秒の間隔を作るのはソフトウェアータイマーによるものです。(あまり正確ではありません)
※250ミリ秒

    utils::delay::milli_second(250);

このように、非常に簡単にオリジナルプログラムを走らせる事が出来ます。


次回、SCI を利用したプログラムを解説する予定です。

RX72N Envision Kit がリリース


ついに、ルネサス社がやってくれた

RX72N Envision Kit

RX72N となっていて、まだ現状では RX72N の情報は無いが、ボード写真のデバイスには RX72N と読めるので、新たに追加されたデバイスのように思う。

Renesas RX72N

これでやっと、「STM32H7」を載せたボードに対抗出来る製品が出た事になる。
とゆーか、RX72N Envision Kit の方が、かなり強力なように思う。

値段も5000円以下!

※Chip One Stop で4620円
RX72N Envision kit (Chip One Stop)


  • 240MHz で動くRXv3 コア(倍精度浮動小数点をサポート)
  • 1024K の内部メモリ(512K+512K)

豊富で強力な外部インターフェース

まだ詳細な情報が少ないが、ボード写真を見ると、かなり強力なボードのようだ。

  • Ethernet (10/100)
  • Wifi/BLE モジュール(ESP32?)
  • SD Card interface
  • USB Host
  • Audio (DSP, D/A, Clock generator インターシル製)
  • LCD (GLCDC/DRW2D)
  • LCD Touch controller
  • On Board Emulator
  • USB Serial on board

RX72M 関係のリソースも既にかなり準備しているので、直ぐにソフト開発も進められると思う。
※RX72N 関係のリソースを準備中

RX72T 関係リソースの整備

最新のRXデバイスの入手

いつもお世話になっているチップワンストップでは、現状、RX66T、RX72T、RX72M のデバイス登録は無い。

百個単位なら、営業に相談すれば入手出来そうだが、人気で、色々な企業が使うデバイス以外は入手が難しいし、数十個でも個人では無理。

RX66TはRSコンポーネンツで1個単位で入手出来た。

そもそも、新規デバイスが1個単位で入手出来るのは、どこかの企業が、そのデバイスを使う機器を開発する為オーダーしたものと思う。
それの余剰品が、個人に回ってくると考えると納得できる。

RX72Mは、とりあえず最新なので、入手して動かしてみたいが、現在でも入手は難しい状態のようで、生産はしているものの、入手は難しい状況となっている。
先日、マウサーのページにRX72Tの扱いがある事に気が付き注文した(1500円くらいなので割高)。
RX72Mもリストには無いが部品の登録はあったので注文したが、現在バックオーダーで8月入荷とある。
※一応2個注文したが・・(@2500と高い)

RX72Tフラッシュ書き込みプログラム

最近のRXは、デバイスが異なっても、フラッシュの書き込みプロトコルを変更する事が少なくなっており
新しいデバイスに対応するのは簡単になっている。

RX72Tのフラッシュ関係プロトコルを斜め読みした感じでは、RX66Tと同じで書き込み出来るようだ。

とりあえず、「rxprog」に、RX72Tプロトコルを追加して、デバイスのコンフィグを追加しておいた。
※現状ではデバイスを入手していないので、書き込めるかは不明

/Git/RX/rxprog % ./rx_prog --device-list
R5F563T6 (RAM: 8K, Program-Flash: 64K, Data-Flash: 8K)
R5F524T8 (RAM: 16K, Program-Flash: 128K, Data-Flash: 8K)
R5F524TA (RAM: 16K, Program-Flash: 256K, Data-Flash: 8K)
R5F564MF (RAM: 512K, Program-Flash: 2048K, Data-Flash: 64K)
R5F5671F (RAM: 512K, Program-Flash: 2048K, Data-Flash: 64K)
R5F564MG (RAM: 512K, Program-Flash: 2560K, Data-Flash: 64K)
R5F571MG (RAM: 512K, Program-Flash: 2560K, Data-Flash: 64K)
R5F564MJ (RAM: 512K, Program-Flash: 3072K, Data-Flash: 64K)
R5F571MJ (RAM: 512K, Program-Flash: 3072K, Data-Flash: 64K)
R5F564ML (RAM: 512K, Program-Flash: 4096K, Data-Flash: 64K)
R5F571ML (RAM: 512K, Program-Flash: 4096K, Data-Flash: 64K)
R5F565NE (RAM: 640K, Program-Flash: 2048K, Data-Flash: 32K)
R5F566TA (RAM: 64K, Program-Flash: 256K, Data-Flash: 32K)
R5F566TE (RAM: 64K, Program-Flash: 512K, Data-Flash: 32K)
R5F566TF (RAM: 128K, Program-Flash: 512K, Data-Flash: 32K)
R5F566TK (RAM: 128K, Program-Flash: 1024K, Data-Flash: 32K)
R5F572MD (RAM: 1024K, Program-Flash: 2048K, Data-Flash: 32K)
R5F572MN (RAM: 1024K, Program-Flash: 4096K, Data-Flash: 32K)
R5F572TF (RAM: 128K, Program-Flash: 512K, Data-Flash: 32K)
R5F572TK (RAM: 128K, Program-Flash: 1024K, Data-Flash: 32K)

RX72T関係デバイスクラス

RX72TはRX66Tの高速版みたいな扱いなので、デバイスクラスを作るのは、RX66Tのリソースを使えるので工数が少ない。
そこで、RX72T関係の整備を始めた。

今回入手できるRX72TはUSB内蔵タイプなので、192MHzで動かす事になる。
ただ、USBを使わない場合200MHzで動かしたいだろうから、外部オシレーターのクロックは8MHzにした。
8MHzなら、PLLの倍率調整で、192MHzも200MHzも調整可能だと思う。

他はRX66Tとほとんど同じ構成で、ファイルをコピーして何も変更していない。

icu.hpp
icu_mgr.hpp
port_map.hpp
peripheral.hpp
power_mgr.hpp
R5F572TK.ld
R5F572TF.ld
README.md

LED 点滅プログラムのコンパイル

デバイスクラスを整備したら、とりあえずLED点滅。

コンパイルとリンクを出来るようにした。
※ソフトディレイループのパラメータは、デバイスを入手してから調整する。

また、標準で使うLEDポートをP01とした。
※P00はUSBブート時の切り替えポートとなっている。

終わりに

※Github にはそのうちマージする。

早く、デバイス来ないかな~
※テスト基板をどうするか・・・


先ほど知ったのだが、C++ の constexpr などを利用した強力なライブラリーをリリースしていた「ボレロ村上」氏が他界したようだ。
ボレロ村上逝去
以前に、C++勉強会で合った事があり、他人事とは思えない、まだ32歳だったようだ、残念だ・・・

RXマイコン・マスストレージドライバー

USB メモリーのアクセスが出来た

細かい内容は、Qiita に投稿、参照して欲しい。

RXマイコンで実現するUSBホスト(USBメモリー編)

USB メモリーのR/W速度を一応簡単に計測した。
記事にあるように、250KB/秒くらい出ている。

これなら、オーディオ再生にも使えそうだ。

SDカードと同時に使えるようにしなければならないので、FatFs 関係は色々改修する部分が出てきそうだ。
ルートにドライブレター的なパスがあれば十分と思う・・

また、USB ハブ経由の場合や、複数の USB メモリを繋いだ場合など、色々と複雑な感じ。

RX64M や RX71M には、USB チャネルが二系統あり、片方は、ハイスピード対応(480MBPS)なので、どのくらい速度が出るのか興味があるところ。
※そう考えると、RX72M の場合、ハイスピード対応では無いのが残念。

ワードプレスでマークダウン記法対応のプラグイン導入

今回の記事とは関係無いが、ワードプレスもマークダウン記法で記事が書けるようにプラグインを導入した。

最近、GitHub が開発のキーになっているので、ドキュメントは、マークダウンで書く事が多くなり、慣れもあり、マークダウンで統一出来るのはありがたい。

RXマイコン、選択型割り込みを使う

最近、ようやくUSB関係を始めた。

フレームワークは、ルネサス純正の物を試用して実験している。
USBのフレームワークでは、イベント関係で割り込みを使っている。

RX65Nでは、選択型割り込みを使っている。

自分のフレームワークと、ルネサス社のフレームワークを合わせるのは、工夫が必要で、そのままではリンクが難しい。

少し調べると、割り込み関係は、「basic/src/hw/r_usb_rx_mcu.c」で設定されており、これを改修すれば良さそうだ。

それで、色々かち合う部分に手を入れ、USBマスストレージ関係をコンパイル、リンクする事が出来るようになった。
早速動作検証するのだが、動かない・・・
どうやら、割り込みがかからないようだった・・・

よくよく調べると、選択型割り込みクラスにバグがあり、それが原因だった。
※以前に実装していたが、選択型割り込みを扱うデバイスが無かったので、動作検証されていなかった・・

RXマイコンでは割り込み要因は256個まで設定できるが、非常に沢山あるペリフェラルで発生する割り込みをアサインするのは無理があり、物理的に足りない。

そこで、RXマイコンには、割り込みをシェアしたり(グループ割り込み)、使いたい割り込みをアサインしてプログラマブルに使う(選択型割り込み)などの仕組みが用意されている。

ただ、同じようなペリフェラルでも、デバイスによって異なるグループだったり、要因が異なったり、複雑で、ドライバーを作る場合に個々に対応しなければならない。

自分の C++ フレームワークでは、この問題を隠蔽して、簡単に扱えるように、色々な仕組みを実装してある。
※この仕組みこそが C++ を使う最大のメリットの一つと思う。
※特殊なツールを使ってコード生成する必要が無い。

例えば、CMT(コンペアマッチタイマー)を使いたい場合、「cmt_io」クラスを使う。

#include "common/cmt_io.hpp"

typedef device::cmt_io<device::CMT0> CMT;
CMT     cmt_;


    {
        uint8_t intr = 3;  // 割り込みレベル
        uint32_t freq = 1000;  // 1000Hz の周期 
        cmt_.start(freq, intr);
    }


    while(1) {

        cmt_.sync();  // 同期

    }

上記の例では、リソースとして「CMT0」を使い、1000Hz の周期を持ったタイマーを割り込みレベル「3」で起動している。

CMTには、チャネルが4つあり、CMT0~CMT3まで使える。

RX65N の場合 CMT0、CMT1 は通常の割り込みだが、CMT2、CMT3 は選択型割り込みを使う必要があるが、それらは隠蔽されていて、特別な設定を行う必要が無い。

#if defined(SIG_RX24T) || defined(SIG_RX66T) || defined(SIG_RX72T)
    typedef cmt_t<0x00088002, peripheral::CMT0, ICU::VECTOR, ICU::VECTOR::CMI0> CMT0;
    typedef cmt_t<0x00088008, peripheral::CMT1, ICU::VECTOR, ICU::VECTOR::CMI1> CMT1;
    typedef cmt_t<0x00088012, peripheral::CMT2, ICU::VECTOR, ICU::VECTOR::CMI2> CMT2;
    typedef cmt_t<0x00088018, peripheral::CMT3, ICU::VECTOR, ICU::VECTOR::CMI3> CMT3;
#elif defined(SIG_RX64M) || defined(SIG_RX71M) || defined(SIG_RX65N) || defined(SIG_RX72M)
    typedef cmt_t<0x00088002, peripheral::CMT0, ICU::VECTOR, ICU::VECTOR::CMI0> CMT0;
    typedef cmt_t<0x00088008, peripheral::CMT1, ICU::VECTOR, ICU::VECTOR::CMI1> CMT1;
    typedef cmt_t<0x00088012, peripheral::CMT2, ICU::VECTOR_SELB, ICU::VECTOR_SELB::CMI2> CMT2;
    typedef cmt_t<0x00088018, peripheral::CMT3, ICU::VECTOR_SELB, ICU::VECTOR_SELB::CMI3> CMT3;
#endif

CMT0~CMT3の定義は、上記のようになっており、割り込み要因をデバイス毎に定義してある。

auto vec = CMT::get_ivec();
if(level_ > 0) {
    if(task != nullptr) {
        icu_mgr::set_interrupt(vec, task, level_);
    } else {
        icu_mgr::set_interrupt(vec, i_task_, level_);
    }
    CMT::CMCR = CMT::CMCR.CKS.b(cks) | CMT::CMCR.CMIE.b();
} else {
    icu_mgr::set_interrupt(vec, nullptr, 0);
    CMT::CMCR = CMT::CMCR.CKS.b(cks);
}

上記は「cmt_io」の割り込み関係を設定する部分で、「auto」を使って、割り込み型「ICU::VECTOR」、「ICU::VECTOR_SELB」を自動で再定義している。

「set_interrupt」APIは、割り込み型の違いを定義してあり、それぞれ、割り込みの管理方法が異なる。

static ICU::VECTOR set_interrupt(ICU::VECTOR vec, utils::TASK task, uint8_t lvl) noexcept {
    set_task(vec, task);
    set_level(vec, lvl);
    return vec;
}

static ICU::VECTOR set_interrupt(ICU::VECTOR_SELB vec, utils::TASK task, uint8_t lvl) noexcept
{
    for(uint16_t i = 144; i <= 207; ++i) {
        if(lvl > 0) {
            if(ICU::SLIXR[i] == 0) {
                ICU::IER.enable(i, 0);
                set_task(static_cast<ICU::VECTOR>(i), task);
                ICU::IPR[i] = lvl;
                ICU::SLIXR[i] = static_cast<uint8_t>(vec);
                ICU::IR[i] = 0;
                ICU::IER.enable(i, 1);
                return static_cast<ICU::VECTOR>(i);
            }
        } else if(ICU::SLIXR[i] == static_cast<uint8_t>(vec)) {
            ICU::IER.enable(i, 0);
            set_task(static_cast<ICU::VECTOR>(i), nullptr);
            ICU::SLIXR[i] = 0;
            ICU::IR[i] = 0;
            return static_cast<ICU::VECTOR>(i);
        }
    }
    return ICU::VECTOR::NONE;
}

※選択型割り込みでは、SLIXR レジスタに、割り込み要因番号を設定する事で行われ、割り込み番号144~207まで定義できる。
※選択型割り込みのバグは、「ICU::SLIXR」レジスタアドレスがタイポしていたものだった・・・

RXマイコン用、libpng の構築

アルファ値を含んだ画像を扱う必要があるので、libpng をインポートした。
PNG では、インデックスカラーの場合でも、カラーパレットにアルファ値を含める事が出来る。
ただ、zlib が必要なのと、記憶割り当てを使う事から、BMP やJPEG を使っていたが、インデックスカラーでアルファ付画像を扱う必要性があり、やはりインポートをする事になってしまった・・
書き込みを使う事は「稀」と考えて、デコーダーのみではあるが・・・
Windows のフレームワーク「glfw_app」では以前からサポートしてあるので、そのコードを再利用したので簡単ではあったけど、意外とライブラリビルド時の「configure」の使い方で google 先生の助けを借りたw

libpng をビルドするには、zlib が必要なので、事前に zlib をビルドしておいた。
※zlib のビルドは普通に出来ると思う。

libpng のビルドでは、ツール関係(コマンドライン実行ファイル)のビルドで失敗するものの(RX マイコンでは、動かす環境のハードルが高い)、ライブラリの構築には成功しているので、それで「ヨシ」とした。
※github には「libpng.a」とヘッダーなど必要な物を上げてあるので、それを利用するぶんには、自分でビルドをする必要は無い。

 ./configure --includedir="/d/Git/RX/zlib" --host=rx-elf --disable-shared

Makefile 編集

make
cp .libs/libpng16.a /d/Git/RX/libpng/libpng.a
cp png.h /d/Git/RX/libpng/.
cp pnglibconf.h /d/Git/RX/libpng/.
cp pngconf.h /d/Git/RX/libpng/.

上記のように、「ホスト」を指定し、zlib のパスを追加してある。
しかしこれだけでは不十分で、make すると、zlib.h が無いとか言ってエラーになる・・・
正しいやり方が判らなかったので、手っ取り早く、configure で生成された Makefile を直接編集した。
・DEFAULT_INCLUDES = -I. -I/d/Git/RX/zlib
※zlib のパスを追加
・CFLAGS = -mcpu=rx600 -O2 -I/d/Git/RX/zlib
※最適化「-O2」を追加
・シェアードライブラリは必要無いので、省いてある。
・ビルドすると、「.libs」ディレクトリにライブラリが出来ている。
・必要なヘッダーをコピーする。

png ファイルのロードは、以前に実装したので、それをほぼそのまま使っている。(glfw3_app/common/img_io/png_io.hpp)

※組み込みでは、png ファイルを出力する事は「稀」と思うので、ロードのみサポートしている。

PNG 画像のアルファ値は、元の画素と合成されて描画する。
※アルファ値が「0」の場合、そのピクセルは描画されない。

#include "graphics/img_in.hpp"

namespace {

     typedef img::scaling<RENDER> PLOT;
     PLOT        plot_(render_);
     typedef img::img_in<PLOT> IMG_IN;
     IMG_IN      imgs_(plot_);
}


     imgs_.load(filename);・

・img_in クラスは、BMP、JPEG、PNG を自動で判別してロードするクラス。
・scaling クラスはワークメモリを最小限にして、スケールしながら描画するもので、それなりにエイリアシングも除去してくれる。

# cd res
# image ff.png
libpng warning: iCCP: known incorrect sRGB profile
# dir
      6727 Jul  9 2016 08:21  ff.png
      3407 Jul  9 2016 08:21  forte.png
     23148 Jul  9 2016 08:21  NoImage.png
      6371 Jul  9 2016 08:21  pause.png
      3419 Jul  9 2016 08:21  piano.png
      6856 Jul  9 2016 08:21  play.png
    373882 Jul  9 2016 08:21  Player.icns
    117306 Jul  9 2016 08:21  player.ico
     17632 Jul  9 2016 08:21  PlayerICON.png
      6361 Jul  9 2016 08:21  plus.png
      6748 Jul  9 2016 08:21  rew.png
      6607 Jul  9 2016 08:21  right.png
      3934 Jul  9 2016 08:21  seek_handle.png
      6364 Jul  9 2016 08:21  seg12.ttf
      4680 May  6 2019 23:08  select.bmp
      6780 Jul  9 2016 08:21  select.png
      4028 Jul  9 2016 08:21  slider_handle.png
      6343 Jul  9 2016 08:21  stop.png
      6605 Jul  9 2016 08:21  up.png
Total 19 files
# image NoImage.png
libpng warning: iCCP: known incorrect sRGB profile
# image ff.png
libpng warning: iCCP: known incorrect sRGB profile
# image PlayerICON.png
libpng warning: iCCP: known incorrect sRGB profile
#

実験は、RX65N Envision Kit で行った。

RXマイコンSDHIインターフェースその2(完了)

相変わらず、SDHCなどの高容量タイプで、ACMD41が失敗する問題に悩んで1週間くらい?

ロジックアナライザを繋いで制御ピンの状態を確認するとか、ありとあらゆる方策を試していたが・・・

全く成果無し状態でいた。

電源の状態が悪いのかとかも確認したが、電源のリップルはそれ程多くは無く、許容範囲だった。
RTK5 RX65N Envision Kit では、SD カード電源制御と、電源電圧の確認用に専用のICを使っているが、それは実装されていない為、とりあえず、P チャネルの MOSFET を取り付けて、電源制御を加えてみたりもしたが、全く効果は無い。
※秋月電子で入手出来る「DMG3415U」を使った。

LA2016 の SDIO 解析画面

LA2016 には、色々な解析モードが用意されており、それを使う事で、CMDピンで、ホストとスレーブ間でやりとりするデータ列を具体的に確認する事が出来る。
凄く便利で、素晴らしい機能だーー
※今まで、こんなに便利な機能なのに、あまり積極的に使っていなかった、他にも色々と解析が出来るので、これからは重宝すると思う。

これで、確認した限りでは、問題無さそうで、2GのSDカードと8GのSDカードの違いは無さそうだった。
※ただ、SDHCカードでは、BUSYのまま・・・

SD カード関係の正規資料なども、色々読んで、何か間違いが無いかを確認していた。

そんな時、アルテラ社のFPGA向けライブラリでSDIOの説明を見つけ、ACMD41関係の部分を読んでいたら、
> SD_SEND_OP_COND(ACMD41)コマンドを送信します。
> ビット [23:0] = サポートされている電圧範囲

ん?

サポートされている電圧範囲?

現状では、0x000000 を送っている・・・

SPI だと、0x000000 を送っていて、SDHCカードを使えている。

それで、ルネサスの r_sdhi ソースを確認してみると、2.7V から 3.6V の場合、0xFF8000 を設定する事が判った・・・

で、修正してみると、今度は成功する・・・
今までの苦労は何だったのか・・・

まぁ、良くある話ではあるのだが、思い込みで、正規の資料を読んでも、重要な事をスルーしてしまう・・・

まぁ動いたから「ヨシ」とする・・

SDモードでの初期化の手順をまとめると・・・

・SDモードによる初期化手順
(1)CMD0、0x00000000
※複数打った方が良いかもしれない(SDカードは応答を返さない)
(2)CMD8、0x000001AA
※0x100 は電圧範囲(2.7V ~ 3.6V)
※0x0AA は、マッチパターン
(3)CMD8 のステータスで、0x1AA が返れば、SDV2 カード
それ以外の場合、エラー
※CMD8のレスポンスが無い場合、そのカードはCMD8をサポートしておらず、別の初期化シーケンスに切り替える。
これは多分、容量が少ない昔のカードの場合など(自分のドライバーでは、現状、サポートしていない)
(4)ACMD41、0x40FF8000
レスポンスのB31が「1」になるまで投げ続ける。
※1回投げて、1ms 待つ、1000回繰り返しても「1」に成らなければエラーとする。
※レスポンスで、B30が「1」なら、そのカードは、ブロックアクセスを行う。
これは、32 ビットだと 0 ~ 4G までしかアクセス出来ないので、それに対応する方法、このビットが有効なら、read/write はブロックアクセスとなる。
(5)CMD2、0 で CID を取得
(6)CMD3、0 で RCA を取得(B31~B16)
(7)CMD7、RCA でカード選択
(8)CMD16,512 でセクターサイズ設定
(9)ACMD6、0x00000002 で、バス幅を4ビットにする。
※1ビットの場合、0x00000000
(10)SDHI のバス幅を切り替えて、クロック速度をブーストする。

まだ、エラー検査とかがズブズブで、割り込みやDMAに対応していないが、とりあえず、動くようになった・・・
速度はかなり高速で、以下のような感じ~
※GitHub のマスターにマージ済み

QIDIAN MLC 32GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  0 [ms]
Write: 440393 Bytes/Sec
Write: 430 KBytes/Sec
Close: 5 [ms]
# read test.bin
SD Read test...
Open:  0 [ms]
Read: 1048576 Bytes/Sec
Read: 1024 KBytes/Sec
Close: 0 [ms]

Lexar 633x 8GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  170 [ms]
Write: 215048 Bytes/Sec
Write: 210 KBytes/Sec
Close: 12 [ms]
# read test.bin
SD Read test...
Open:  2 [ms]
Read: 1302578 Bytes/Sec
Read: 1272 KBytes/Sec
Close: 0 [ms]

SanDisk Industrial 8GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  3 [ms]
Write: 338359 Bytes/Sec
Write: 330 KBytes/Sec
Close: 98 [ms]
# read test.bin
SD Read test...
Open:  1 [ms]
Read: 1747626 Bytes/Sec
Read: 1706 KBytes/Sec
Close: 0 [ms]

SanDisk Industrial 16GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  6 [ms]
Write: 397941 Bytes/Sec
Write: 388 KBytes/Sec
Close: 5 [ms]
# read test.bin
SD Read test...
Open:  2 [ms]
Read: 1227840 Bytes/Sec
Read: 1199 KBytes/Sec
Close: 0 [ms]

TOSHIBA 40MB/s Taiwan 32GB (SDHC) Class10
# write test.bin
disk_ioctl: 00
Open:  1 [ms]
Write: 204920 Bytes/Sec
Write: 200 KBytes/Sec
Close: 46 [ms]
# read test.bin
SD Read test...
Open:  1 [ms]
Read: 1091130 Bytes/Sec
Read: 1065 KBytes/Sec
Close: 0 [ms]

SanDisk Industrial 16GB (SDHC) Class10 for Soft-SPI
# write test3.bin
Open:  0 [ms]
Write: 181634 Bytes/Sec
Write: 177 KBytes/Sec
Close: 17 [ms]
# read test3.bin
SD Read test...
Open:  2 [ms]
Read: 232758 Bytes/Sec
Read: 227 KBytes/Sec
Close: 0 [ms]

以下のようにして、SDHIインターフェースを使う場合とSPI(ソフトSPI)を使う場合を切り替えできる。

    // カード電源制御は使わない場合、「device::NULL_PORT」を指定する。
//  typedef device::NULL_PORT SDC_POWER;
    typedef device::PORT<device::PORT6, device::bitpos::B4> SDC_POWER;

#ifdef SDHI_IF
    // RX65N Envision Kit の SDHI ポートは、候補3になっている
    typedef fatfs::sdhi_io<device::SDHI, SDC_POWER, device::port_map::option::THIRD> SDHI;
    SDHI    sdh_;
#else
    // Soft SDC 用 SPI 定義(SPI)
    typedef device::PORT<device::PORT2, device::bitpos::B2> MISO;  // DAT0
    typedef device::PORT<device::PORT2, device::bitpos::B0> MOSI;  // CMD
    typedef device::PORT<device::PORT2, device::bitpos::B1> SPCK;  // CLK

    typedef device::spi_io2<MISO, MOSI, SPCK> SPI;  ///< Soft SPI 定義

    SPI     spi_;

    typedef device::PORT<device::PORT1, device::bitpos::B7> SDC_SELECT;  // DAT3 カード選択信号
    typedef device::PORT<device::PORT2, device::bitpos::B5> SDC_DETECT;  // CD   カード検出

    typedef fatfs::mmc_io<SPI, SDC_SELECT, SDC_POWER, SDC_DETECT> MMC;   // ハードウェアー定義

    MMC     sdh_(spi_, 35000000);
#endif

RXマイコンSDHIインターフェースその1

RX65N Envision Kit の、SD カードインターフェースは、SDHI インターフェースを想定した設計になっている。

しかし、RX マイコンの SDHI インターフェースでは、ハードウェアーマニュアルの情報だけでは、不明な事が多く、ソフトウェアを実装出来ない状態だった。
※SDHI のハードウェアー操作は、SD カードの制御シーケンスと密接に関連している為、これは仕方無いかもしれない・・
※何回かトライしたが初期化の段階で、思ったように動かないので、断念していた・・
※とりあえず、実績のある ChaN 氏のソフトウェアー SPI で動かしていた。

最近、ルネサスは、SD カードの操作が含まれるマネージャー関連(SD カードの初期化などが含まれる r_sdc_sdmem_rx)を公開するようになったので、具体的にどのように SDHI にアクセスするのか不明な部分が明らかになってきた。
※以前、RX64M、RX71M は、SDHI インターフェースがオプションとなっており、自分の持っているデバイスは、「SDHI なし」なので、試せないでいた・・

また、SD カードを SPI でアクセスする方法は、かなり情報があるのだが、4ビット(SD モード)でアクセスする方法は、情報が少なく、どのような初期化をするのか、イマイチ判らなかった・・・
最近ネットで、kingston SD カードの詳細な 解説を見つけ、この情報をたよりにする事で、SD モードでの推移方法がかなり詳しく判った。

それらの情報を元に、初期化プロセスを実装してみたが、正常に動作しない・・・
(1) 1GB、2GB の HC ではない SD カードだと、初期化に成功する事を発見したが、8GB、16GB、32GB(SDHC)のカードでは、初期化に失敗する。
※ACMD41コマンドで失敗しているが原因が判らない。
ACMD41 コマンドは、ステートに、BUSYがREADYに変わるまで呼び続ける仕様だが、SDHC カードの場合、いつまでたっても READY にならない・・・

とりあえず、手持ちの中で、動作する2枚のカードをテストした。
2GB のカードより、1GB のカードの方が性能が高い為、1GB のカードのみ評価した。
・1ビットバスと4ビットバスの速度比較
・クロック速度による違い

KINGMAX 1GB MicroSD CARD:
Clock: 15MHz
1 bit bus:
Open:  0 [ms]
Read: 825650 Bytes/Sec
Read: 806 KBytes/Sec
Close: 0 [ms]

4 bits bus:
Open:  0 [ms]
Read: 1233618 Bytes/Sec
Read: 1204 KBytes/Sec
Close: 0 [ms]

Clock: 30MHz:
Open:  0 [ms]
Read: 1347784 Bytes/Sec
Read: 1316 KBytes/Sec
Close: 0 [ms]

上記のように、大体1.5倍くらいの違いがある。
駆動クロックを倍にすると、10% 弱速くなるようだが、最終的に扱う場合には、ノイズ耐性、インピーダンスのマッチング(ダンピング抵抗、プルアップ、プルダウン抵抗)など色々考える事が多く、微妙だろうと思う。

流石、4ビットモードは、昔の 1GB の SD カードでも 1.3M バイト毎秒以上の速度が出るので、十分利便性が高い。(早急にSDHCカードが動かない原因を突き止めないと・・・)

最近の高速、高容量の SD カードは、高速動作時に、消費電力を下げる為、より低い電圧(1.8V など)で動作するような仕組みがあるようだ。

しかしながら、インターフェースの I/O 電圧が、低い電圧に対応していないとならない為、たとえ、電源電圧を制御する事が出来ても、対応出来ない。
RX マイコンの SDHI は、1.8V などの I/O 電圧に対応していないので、レベルシフターを間に入れるなどの対応をしないと、電圧を下げて使う事が出来ない。

又、バスのサンプリングポイントを調整するコマンドもあるようだ。

今回はここまで、SDHC における、ACMD41 が失敗する原因を色々探って、色々な実験をしたが、成果は無かった・・・
ハードウェアーで足りない部分があるのかとも思ったが、それも違うようだ・・・
ルネサスのソースコードも読んで、同じようなシーケンスを組んでいる筈だが、動かない・・・

ChaN さんの SPI 仕様では、ACMD41 は正常終了して、SDHC は動くのだが、それと何が違うのか、判らないでいる・・・

R8C で AD9851を試してみる

以前に、周波数シンセサイザ、AD9833 を試していたが、より高い周波数に対応した、AD9851も試してみた。
※最近RXマイコンばかりで久しぶりにR8Cを触った、このような実験には、小回りが利いて便利だ。

値段はかなり高く、モジュールで3500円程だった。

買ってから気がついたが、このICはサイン波のみで、三角波はサポートしていない。
※矩形波はコンパレーターがあるので作れるだろうか・・

ただ、内部は最大180MHzで駆動できる為、出力できる周波数を高く設定でき、周波数ステップも細かく設定可能。
※AD9850は最大125MHz
※AD9833は最大25MHz
※AD9851では、電源電圧により、最大動作周波数が異なる

モジュールでは、出力にLCRを使ったローパスフィルタが組んであるのだが、出力する周波数によって振幅が小さくなるので、結構扱いが面倒だ・・
※10MHzだと減衰がかなり大きい。
この手のICを実用的に使うとなると、一番ネックになるのが、出力の扱いだと思う。
中心をGNDにして、+-で振幅させたいとか、出力振幅やオフセットを設定したいとかするには、外部に何らかの回路を付けたいが、マイコンで制御できるようにするには、意外と単純では無い。

いつものようにテンプレートライブラリとしたが、周波数の計算で、倍精度の浮動小数点を使っている。
本来整数計算だけで出来ると思うが、参考にしたライブラリの手法をそのまま流用した、時間がある時にでも考えてみたい。

ICの制御は基本4本の制御線が必要で、外部基準発信器をどのようにするかを設定出来るようにしてある。

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
/*!
    @brief  AD985X テンプレートクラス
    @param[in]  D7      ポート・クラス
    @param[in]  W_CLK   ポート・クラス
    @param[in]  FQ_UD   ポート・クラス(FQ_UpdDate)
    @param[in]  RESET   ポート・クラス
    @param[in]  BASEC   ベースクロック(AD9850:125, AD9851:180)
*/    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
template <class D7, class W_CLK, class FQ_UD, class RESET, uint32_t BASEC>
class AD985X {

...
public:
    //-----------------------------------------------------------------//
    /*!
        @brief  レジスターを設定
        @param[in]  w0      W0 レジスター値
        @param[in]  freq    周波数
     */
    //-----------------------------------------------------------------//
    void set_reg(uint8_t w0, float freq)


};

サンプルでは、外部OSCが30MHzで、内部の6倍PLLを有効にする。

    // P1_0(20):
    typedef device::PORT<device::PORT1, device::bitpos::B0> D7;
    // P1_1(19):
    typedef device::PORT<device::PORT1, device::bitpos::B1> W_CLK;
    // P1_2(18):
    typedef device::PORT<device::PORT1, device::bitpos::B2> FQ_UP;
    // P1_3(17):
    typedef device::PORT<device::PORT1, device::bitpos::B3> RESET;

    // 180MHz
    typedef chip::AD985X<D7, W_CLK, FQ_UP, RESET, 180> AD9851;
    AD9851  ad9851_;



    {  // AD9851 開始
        ad9851_.start();
        ad9851_.reset();
    }




    char tmp[32];
    command_.get_word(1, sizeof(tmp), tmp);
    float a = 0.0f;
    if((utils::input("%f", tmp) % a).status()) {
        ad9851_.set_reg(0b00001001, a);  // Phase: 1, PLL 6x
    } else {
        error = true;
    }

市販の周波数ジェネレーターはそれなりに高いので、安価な実験用発信器が欲しかったのだが、実用的な物にするにはそれなりの工夫が必要で、それなりに考える必要がある。
AD9851は内部180MHz動作なのだが、三角波も出せないので、AD9833の方が良いのかもしれない・・・

AD985X.hpp
github AD9851_sample