RX72N Envision Kit での開発(その5)関数電卓を作る

関数電卓をでデザインする

何か、実用的なアプリを作りたくて、今回「関数電卓」を選んでみました。

グラフ表示付きの関数電卓が、それなりの値段で売られているので、それなら、自分で作ればいいのでは?
と言う、不憫な動機も少しはありますw

実際、作ってみると、けっこう奥が深く、C++ の学習にも良い教材と思います。

  • 実際のコードは、それなりに巨大で、サンプルと言うには無理があるかもしれないです。
  • GUI 関係の挙動をプログラムすると、物理的にコード量が多くなります。
  • 通常、演算には double を使えば、それなりの精度なので実用上十分かもしれませんが面白味に欠けると思います。
  • 240MHz で動く RX72N で動かすのならと思い、「多倍長」のライブラリを利用してみました。
  • メモリが許す限り大きな桁が可能なのですが、とりあえず250桁にしています。(簡単に増やせますが、表示方法を工夫する必要があります)
  • 将来的には、WiFi を有効にして、ブラウザ経由で操作する事も行う予定です。
  • また、プログラム電卓としての機能やグラフ表示、数式処理も付けたいと思っています。
  • まだ及第点と言う訳ではなく、とりあえず、最低限の機能を使える状態です。

API レベルシュミレータの導入

組み込みマイコンで開発を行う場合、フラッシュメモリへの書き込みを行い、ターゲットを起動して動作確認をする流れになります。
しかし、実行バイナリーサイズが大きくなると、フラッシュへの書き込み時間が増え、「修正」→「確認」のサイクルが長くなります。
GUI 系プログラムでは、「良い見た目と」、「良い操作性」を実現するには、細かい調整や修正がどうしても必要になるので、「試す」サイクルが長いのは、かなりの問題で、開発効率が悪いです。

  • 漢字のビットマップフォントだけでも260Kあります。
  • 実機では、UTF-8 を OEM(S-JIS)のコードに変換する為、FatFs を利用しています。

前もって、PC 上で「見た目」や「操作の挙動」を確認できるだけでも、開発効率が格段に上がります。

今回、PC で動作するシュミレータを作り、その助けを借りて、このアプリを作成しました。
電卓の機能もシュミレータ上で確認出来るよう、RX マイコンのソースコードを共有しています。


RX マイコンの GUI フレームワークでは、描画は全てソフトで行っており、DRW2D エンジンをまだ有効に利用していません。
これは、DRW2D エンジンが内蔵されていない環境でも動作させる事と、現在、ソフトで描画している部分を DRW2D で置き換える事が可能な構造になるようにする意味もあります。
※ DRW2D エンジンによる描画クラスは現在研究、開発中です。

シュミレータは、以前から開発を続けている「glfw3_app」フレームワークを利用しています。

このフレームワークは、OpenGL、GLFW3、OpenAL などオープンソースを組み合わせた、リアルタイム描画に適したものです。
glfw3_app は、マルチプラットホームで、OS-X でも同じように動作します。
自分で開発しているので、Unity や VS の C# 環境より扱い易く、思った事が短時間で実現出来ます。

シュミレータの構成

RX マイコンの GUI 描画では、表示ハードウェアーとして GLCDC を利用します。
ソフトレンダラーは、GLCDC のフレームバッファに対して描画を行う構造なので、これを真似たクラスを作ります。
シュミレータは、このクラスのフレームバッファを PC のフレームにコピーしています。
コピーは毎フレーム行っているので、リアルタイムな動作が出来ます。

    template <uint32_t LCDX, uint32_t LCDY>
    class glcdc_emu {
    public:
        static const uint32_t   width  = LCDX;
        static const uint32_t   height = LCDY;

    private:
        uint16_t fb_[LCDX * LCDY];

    public:
        void sync_vpos() { }

        void* get_fbp() { return fb_; }
    };
    typedef glcdc_emu<LCD_X, LCD_Y> GLCDC;

タッチパネルインターフェースとして I2C 接続された、FT5206 デバイスの代わりに、マウスの移動と、クリックをタッチパネル操作に模倣するようにします。

    class touch_emu {
    public:

        struct touch_t {
            vtx::spos   pos;
        };

    private:
        touch_t touch_[4];
        uint32_t    num_;

    public:
        touch_emu() : num_(0) { }

        uint32_t get_touch_num() const { return num_; }

        const auto& get_touch_pos(uint32_t idx) const {
            if(idx >= 4) idx = 0;
                return touch_[idx];
            }

        void update() { }

        void set_pos(const vtx::spos& pos)
        {
            touch_[0].pos = pos;
            num_ = 1;
        }

        void reset() { num_ = 0; }
    };
    typedef touch_emu TOUCH;

RX マイコンフレームワークで利用しているクラスを、シュミレータ側に持ってきて、利用します。
RX マイコンのフレームワークは、別のプラットホームでもコンパイル可能なように、依存関係をなるべく排除した実装なので、無改造で利用出来ます。

#ifndef EMU
#include "common/renesas.hpp"

#include "common/fixed_fifo.hpp"
#include "common/sci_i2c_io.hpp"
#include "chip/FT5206.hpp"
#endif

#include "graphics/font8x16.hpp"
#include "graphics/kfont.hpp"
#include "graphics/graphics.hpp"
#include "graphics/simple_dialog.hpp"
#include "graphics/widget_director.hpp"
#include "graphics/scaling.hpp"

詳しくは、プロジェクトのコードを参照して下さい。

このシュミレータのおかげて、細かい調整が効率よく出来ました、今後他のプロジェクトでも利用したいと思います。


多倍長ライブラリの選択

最初、boost の 多倍長浮動小数点ライブラリ Boost Multiprecision Library を利用していましたが、RX マイコンの環境では、コンパイルが出来ない事が判りました。
これは主に、マルチスレッド時における、オブジェクトのロックに起因する API が、RX マイコン側の環境で見つからない為のようでした。

本来、boost のソースコードは、RX マイコン用に対応させる必要がありますが、多くのクラスでは、それを行わなくても動作するので、mingw64 環境用の boost を利用していました。
boost を RX マイコンに対応させるのは、今後の課題です。

RX マイコンでは、スレッド関係のモデルは、FreeRTOS を利用する事になるので、対応する部分を修正する必要があると思います。
これが、どのくらいのハードルなのかも未定だったので別の選択枠を考えました。

boost はライセンスが緩いので、なるべく使いたいのですが仕方ありません。

そこで、見つけたのは、GNU gmp、mpfr ライブラリです。

これらは、古いプロジェクトで、C 言語ベースです、多分 RX マイコン用にビルド出来るものと思いました。

gmp、mpfr の RX マイコンへのポート(コンパイル)

最近、RX マイコンの開発環境として、Renesas GNU RX gcc-8.3.0 を利用しています。
これらのツールチェインは、mingw 環境で独自にコンパイルされたパッケージで提供されています。

パスを通せば、MSYS2 のシェルから動かせるのですが、「./configure」を動かす場合、パス中にスペースが含まれていたり、マルチバイト文字があると、configure が正しく動作しません。
そこで、MSYS2 上の「/usr/local」に、ツールチェインをコピーしました。

cp -r /c/Users/hira/AppData/Roaming/GCC\ for\ Renesas\ RX\ 8.3.0.202004-GNURX-ELF/rx-elf /usr/local/.

※現在、アップデートされたパッケージをインストールしている為、上記パスとなっています。


gmp のソースコードを取得して展開、コンパイル

.lz 形式のファイルを展開する為、lzip を扱えるようにインストールする必要があります。

% pacman -S lzip
% tar --lzip -xvf gmp-6.2.1.tar.lz
% cd gmp-6.2.1
% ./configure --host=rx-elf --prefix=/usr/local/rxlib --disable-shared
% make
% make install

RXマイコン用多倍長ライブラリ (gmp) のコンパイル


mpfr のソースコードを取得して展開、コンパイル

% ./configure --host=rx-elf --prefix=/usr/local/rxlib --with-gmp=/usr/local/rxlib
% make
% make install

RXマイコン用多倍長ライブラリ (mpfr) のコンパイル


mpfr のラッパー

mpfr を C++ から扱うラッパーは色々な選択肢があります。

しかし、組み込みマイコンで使うとなると色々制約があります。

組み込みマイコンでは、iostream は巨大になるので利用する事が出来ない。

殆ど全てのラッパーは、結果出力として、iostream を使ったものが主流です。(C++ なので当然そうなります・・)
RX マイコンでも、iostream を利用する事は出来るのですが、巨大で、RAM も沢山消費する為、できれば利用したくありません。

結局、自分のシステムにマッチする mpfr ラッパーを実装しました。

basic_arith テンプレートクラスが利用する範囲に限られるので、シンプルなものです。

common/mpfr.hpp にあります。

mpfr では、数値を扱うのは「mpfr_t」構造体です。

ラッパーでは、この構造体をクラスで包んで、クラスオブジェクトとして扱い、このオブジェクトに対する「操作」として、オペレータをオーバーロードするだけです。

名前空間を mpfr として、value クラスとしています。

#include <cmath>
#include <mpfr.h>

namespace mpfr {

    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    /*!
        @brief  mpfr オブジェクト
        @param[in]  num     有効桁数
    */
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    template <uint32_t num>
    class value {

        mpfr_t      t_;
        mpfr_rnd_t  rnd_;

オペレータのオーバーロード関係:

        bool operator == (int v) const noexcept { return mpfr_cmp_si(t_, v) == 0; }
        bool operator != (int v) const noexcept { return mpfr_cmp_si(t_, v) != 0; }
        bool operator == (long v) const noexcept { return mpfr_cmp_si(t_, v) == 0; }
        bool operator != (long v) const noexcept { return mpfr_cmp_si(t_, v) != 0; }
        bool operator == (double v) const noexcept { return mpfr_cmp_d(t_, v) == 0; }
        bool operator != (double v) const noexcept { return mpfr_cmp_d(t_, v) != 0; }

        value& operator = (const value& th) noexcept {
            mpfr_set(t_, th.t_, rnd_);
            return *this;
        }
        value& operator = (long v) noexcept {
            mpfr_set_si(t_, v, rnd_);
            return *this;
        }
        value& operator = (double v) noexcept {
            mpfr_set_d(t_, v, rnd_);
            return *this;
        }

        const value operator - () noexcept
        {
            value tmp(*this);
            mpfr_neg(tmp.t_, tmp.t_, rnd_);
            return tmp;
        }

        value& operator += (const value& th) noexcept
        {
            mpfr_add(t_, t_, th.t_, rnd_);
            return *this;
        }

        value& operator -= (const value& th) noexcept
        {
            mpfr_sub(t_, t_, th.t_, rnd_);
            return *this;
        }

        value& operator *= (const value& th) noexcept
        {
            mpfr_mul(t_, t_, th.t_, rnd_);
            return *this;
        }

        value& operator /= (const value& th) noexcept
        {
            mpfr_div(t_, t_, th.t_, rnd_);
            return *this;
        }

        value operator + (const value& th) const noexcept { return value(*this) += th; }
        value operator - (const value& th) const noexcept { return value(*this) -= th; }
        value operator * (const value& th) const noexcept { return value(*this) *= th; }
        value operator / (const value& th) const noexcept { return value(*this) /= th; }

mpfr.hpp


basic_arith クラス

四則演算などの記号や括弧、シンボル名、関数名を含んだ文字列をパースして、実際の演算を行うクラスです。
このクラスは、数値オブジェクト、シンボル名、関数名、クラスをパラメータとするテンプレートです。

basic_arith.hpp

    static const uint32_t CALC_NUM = 250;  ///< 250 桁

    typedef mpfr::value<CALC_NUM> NVAL;

    typedef utils::calc_symbol<NVAL> SYMBOL;
    SYMBOL  symbol_;

    typedef utils::calc_func<NVAL> FUNC;
    FUNC    func_;

    typedef utils::basic_arith<NVAL, SYMBOL, FUNC> ARITH;
    ARITH   arith_;

まとめ

CALC_sample

今回、シュミレータの導入で、GUI を含んだアプリを効率良く開発する事が出来ました。
また、gmp、mpfr などのライブラリを扱う事で、これらの学習もある程度出来ました。

アプリは、タッチパネル付き LCD のガジェットにも適当なものと思います。

ライセンス

基本は、MIT ライセンスですが、gmp、mpfr ライブラリは注意が必要です。

libgmp: GNU LGPL v3 and GNU GPL v2
libfrmp: GNU LGPL v3

RXマイコン用多倍長ライブラリ (mpfr) のコンパイル

mpfr について

gmp をコンパイルして動かす事は出来たので、今度は mpfr をコンパイルする。

mpfr は gmp を使い、初等関数などをサポートしたライブラリで、ルート、ログ、三角関数など色々な関数を使えるようになる。

  • 電卓には必須のライブラリだ
  • gmp は基本的に四則演算のみを行う

mpfr をコンパイルする

まず、mpfr のソースコードを取って来る。

GNU MPFR Library

展開してコンパイル、ここでのキモは、gmp ライブラリが置いてある場所を指定する事。
※指定しないと、gmp がシェアードライブラリじゃないとリンク出来ないと思う。(前回、gmp はスタテックライブラリを作成した)

% ./configure --host=rx-elf --prefix=/usr/local/rxlib --with-gmp=/usr/local/rxlib
% make
% make install

mpfr を使ってみる

    void test_mpfr_()
    {
        mpfr_t a, c;

        mpfr_init2 (c, 50);
        mpfr_set_d (c, 2.0, MPFR_RNDD);
        mpfr_init2 (a, 50);

        mpfr_sqrt(a, c, MPFR_RNDD);

        mpfr_printf("sqrt(2): %.50RNf\n", a);

        mpfr_clear (c);
        mpfr_clear (a);
    }
Start SCI (UART) sample for 'RX64M' 120[MHz]
SCI Baud rate (set):  115200
SCI Baud rate (real): 115355 (0.13 [%])
CMT rate (set):  100 [Hz]
CMT rate (real): 100 [Hz] (0.00 [%])
    7612058254738945
*
    9263591128439081
--------------------
70514995317761165008628990709545
sqrt(2): 1.41421356237309403525159723358228802680969238281250

なるほど、簡単だー

mpfr C++ ラッパーを試す

mpfr を使う C++ ラッパーは色々ある、boost もその一つだが、RX マイコン用にカスタマイズしないと、コンパイルが通らない。

他のラッパーも試してはみたものの、基本、どれも iostream に依存していて、組み込みマイコンとは相性が悪い・・・
※非常に巨大になる・・・

つまり、これは、またしても車輪の再発名か・・・

まぁ、でも、機能を絞るのでそんなに大変じゃないのかなと思って、実験的に作ってみた。

とりあえず、四則演算が出来れば、俺俺 Arith クラス(数式解析クラス)に組み込める。

  • 数式解析は、数学的な数式を入力して、それを計算する。
  • 掛け算、割り算が優先されるとか、括弧が優先されるとか、意外と面倒だ。
  • シンボル(変数)の展開
  • 関数の展開
  • べき乗の展開
    basic_arith クラス

とりあえず、最低限必要な部分を作ってみた

オブジェクトに対してのオペレーターをそれなりに作れば、正しく動くと思う。

mpfr.hpp を実装、最低限必要そうな部分のみ実装してある。

実装では、mpfr 名前空間を作り、「value」クラスを定義した。

value クラス内に、mpfr_t 構造体を置いて、それに対する操作を列挙した。

重要なのは、四則演算などのオペレータをオーバーロードする事だ。

        bool operator == (int v) const noexcept
        {
            return mpfr_cmp_si(t_, v) == 0;
        }
        bool operator == (long v) const noexcept
        {
            return mpfr_cmp_si(t_, v) == 0;
        }
        bool operator == (double v) const noexcept
        {
            return mpfr_cmp_d(t_, v) == 0;
        }

        value& operator = (const value& th) noexcept {
            mpfr_set(t_, th.t_, rnd_);
            return *this;
        }
        value& operator = (long v) noexcept {
            mpfr_set_si(t_, v, rnd_);
            return *this;
        }
        value& operator = (double v) noexcept {
            mpfr_set_d(t_, v, rnd_);
            return *this;
        }

        const value operator - () noexcept
        {
            value tmp(*this);
            mpfr_neg(tmp.t_, tmp.t_, rnd_);
            return tmp;
        }

        value& operator += (const value& th) noexcept
        {
            mpfr_add(t_, t_, th.t_, rnd_);
            return *this;
        }

        value& operator -= (const value& th) noexcept
        {
            mpfr_sub(t_, t_, th.t_, rnd_);
            return *this;
        }

        value& operator *= (const value& th) noexcept
        {
            mpfr_mul(t_, t_, th.t_, rnd_);
            return *this;
        }

        value& operator /= (const value& th) noexcept
        {
            mpfr_div(t_, t_, th.t_, rnd_);
            return *this;
        }

        value operator + (const value& th) const noexcept { return value(*this) += th; }
        value operator - (const value& th) const noexcept { return value(*this) -= th; }
        value operator * (const value& th) const noexcept { return value(*this) *= th; }
        value operator / (const value& th) const noexcept { return value(*this) /= th; }

このくらいで、とりあえず、basic_arith で扱えるようになった。

早速、RX72N Envision Kit で動かしてみた、問題なく計算出来るようになったー

~~ 表示関係とかが、イマイチなので、整理したら、git のマスターブランチにプッシュする。~~
電卓アプリは、引き続き、機能追加などを行っていく予定。

関数電卓サンプル

RXマイコン用多倍長ライブラリ (gmp) のコンパイル

多倍長浮動小数点数

前回、電卓アプリを実験的に作ってみた。

ただ、「240MHz で動く32ビットマイコンなのに精度が64ビットの浮動小数点」なの?

これは、かなり痛い・・・

そこで、多倍長浮動小数点数などを扱えるライブラリを利用する事にした、最初、boost にある「Boost Multiprecision Library」を利用してみた。
何の問題もなく、簡単に数十桁の演算が出来る事を確認した。
しかし、RX マイコンの環境(Renesas GNU RX gcc compiler 8.3.0)では、これらのライブラリを含んだコードをコンパイル出来ない。
これは、mingw64 用の boost ソースコードを使っている為で、本来なら、boost のソースコードを RX マイコン用にカスタマイズしなければならない。

  • 多くのライブラリは、専用の物を作らなくても、対応可能な事から、この問題を避けてきた。
  • コンパイルで失敗する主な理由は、スレッド関係のようだ・・

しかし、boost を RX マイコン用にカスタマイズするのは、それはそれで大変そうだと思い、少し発想を変えてみようと思った。
また、boost のライブラリは、速度的には、古くからある、gmp、mpfr ライブラリより劣ると言われている。
※しかしながら、gmp や mpfr はライセンスが GNU なので、あえて boost を使う理由があると思える。

  • boost には、これら(gmp mpfr)のライブラリをラップしたクラスもあるが、これは完全に環境依存となっている。
  • Multiprecision のコード関係を RX マイコンに対応させるのはそれなりの労力だと思える。

とりあえず、gmp ライブラリをコンパイルしてみる。

操作は、MSYS2 上のコンソールで行う。

gmp.org

ソースコードを取ってくる。

見慣れない「lz」拡張子に対応する為、lzip をインストールしておく。

 % pacman -S lzip

続いて解凍する。

tar --lzip -xvf gmp-6.2.1.tar.lz

.configure するには、少し問題がある、gmp の configure は、Renesas GNU rx-elf 関係があるパスを正しく認識しない。
これは、パスにスペースが含まれる為で、configure を直すのも大変そうなので、とりあえず、rx-elf 関係を、mingw の「/usr/local」以下にコピーして対応した。

% cd /usr/local
% cp -r /c/Users/hira/AppData/Roaming/GCC\ for\ Renesas\ RX\ 8.3.0.202004-GNURX-ELF/rx-elf .

rx-elf 関係のパスを変更して、bash を再起動 (.bash_profile)

# rx-elf path
# PATH=$PATH:/usr/local/rx-elf/bin
# PATH=$PATH:/C/'Program Files (x86)'/'GCC for Renesas RX 8.3.0.202002-GNURX-ELF'/rx-elf/rx-elf/bin
# PATH=$PATH:/C/Users/hira/AppData/Roaming/'GCC for Renesas RX 8.3.0.202004-GNURX-ELF'/rx-elf/rx-elf/bin
PATH=$PATH:/usr/local/rx-elf/rx-elf/bin

configure を実行:

% rx-elf-gcc --version
rx-elf-gcc.exe (GCC_Build_20201001) 8.3.0.202004-GNURX 20190222
Copyright (C) 2018 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
% cd /d/Git/RX/gmp/gmp-6.2.1
% ./configure --host=rx-elf --prefix=/usr/local/rxlib --disable-shared

...

  Version:           GNU MP 6.2.1
  Host type:         rx-unknown-elf
  ABI:               standard
  Install prefix:    /usr/local/rxlib
  Compiler:          rx-elf-gcc
  Static libraries:  yes
  Shared libraries:  no

% make
% make install

本来、RX コア別の最適化オプションを指定した方が良いが、v1, v2, v3 で利用出来るように、「素」の状態でコンパイルした。

実際に使ってみる

とりあえず、RX64M で実験した。

/usr/local/rxlib 以下に gmp 関係のライブラリがあるので、その設定を追加する。

実験コードを(WEB からコピペ)

    void test_gmp_()
    {
        mpz_t x, y, result;

        mpz_init_set_str(x, "7612058254738945", 10);
        mpz_init_set_str(y, "9263591128439081", 10);
        mpz_init(result);

        mpz_mul(result, x, y);
        gmp_printf("    %Zd\n"
             "*\n"
             "    %Zd\n"
             "--------------------\n"
             "%Zd\n", x, y, result);

        /* free used memory */
        mpz_clear(x);
        mpz_clear(y);
        mpz_clear(result);
    }
Start SCI (UART) sample for 'RX64M' 120[MHz]
SCI Baud rate (set):  115200
SCI Baud rate (real): 115355 (0.13 [%])
CMT rate (set):  100 [Hz]
CMT rate (real): 100 [Hz] (0.00 [%])
    7612058254738945
*
    9263591128439081
--------------------
70514995317761165008628990709545
#

とりあえず問題無さそうだ。

RX マイコンに最適化するには、アセンブラのコードを gmp に追加する必要がありそうだが、今後の課題とする。

今回はここまで。

RX マイコン GUI フレームワークのエミュレーション

フラッシュROMの書き換えに時間がかかる・・

RX65N、RX72N Envision Kit で、GUI アプリケーションを作成する場合、オブジェクトがそこそこ大きくなる。
それを、マイコンにロードして動作を確認していると、一度のターンで、それなりに時間がかかり、開発効率が悪い。
GUI 系のアプリでは、現状、細かい調整や見た目重視になるので、さらにターン数は多くなり、完成度を上げるハードルが高くなる。
そこで、Windows のアプリ上で、動作を確認出来るように、エミュレーター的なアプリを作成した。

RX72N Envision Kit では、マイコン内蔵のフラッシュメモリ書き込みは、1本の端子で J-TAG をシリアライズして接続している。
※FINED 端子
その制約で、書き込み速度が RX65N Envision Kit に比べてさらに遅くなっている。(RX65N Envision Kit は J-TAG 接続)


エミュレーターと言っても、RXマイコンのバイナリーレベルで動かすのではなく、単純なAPIレベルでの動作に限定している。

俺俺フレームワークの「glfw_app」を利用し、RXマイコンから必要なソースコードを持っていき、
関係する部分をコンパイル出来るようにする。
そして、描画したフレームバッファを表示するだけとなっている。
また、マウスでクリックした状態を、タッチパネルでの操作に似せて、情報をフレームワークに送る。
※残念ながら、マルチタッチはエミュレーション出来ない。

RX マイコンの GUI フレームワークは、テンプレートで実装している部分が多く、描画部と、タッチ入力部は分離している。
なので、非常に簡単なパスを作るだけで実現できる。

実際のパス接続

GUIフレームワークで要求されるクラスは主に二つとなっている。

  • レンダリングクラス
  • タッチ入力クラス

上記二つのクラスをテンプレートパラメーターとして widget_director に参照で渡す構造となっている。

    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    /*!
        @brief  Widget ディレクター
        @param[in]  RDR     レンダークラス
        @param[in]  TOUCH   タッチクラス
        @param[in]  WNUM    widget の最大管理数
    */
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    template <class RDR, class TOUCH, uint32_t WNUM>
    struct widget_director {

また、ソフトウェアーレンダリングクラスは、描画ハードウェアーのインスタンスを参照で渡している。
描画クラスには、フォントのインスタンスが含まれる。

    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    /*!
        @brief  レンダリング
        @param[in]  GLC     グラフィックス・コントローラー・クラス
        @param[in]  AFONT   ASCII フォント・クラス
        @param[in]  KFONT   漢字フォントクラス
    */
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    template <class GLC, class FONT = font_null>
    class render {

描画ハードウェアーは、フレームバッファを管理している。
中身は、描画スクリーンのサイズと、先頭アドレスだけとなっている。

そこで、以下のようなクラスを用意した。

    static const int16_t LCD_X = 480;
    static const int16_t LCD_Y = 272;

    template <uint32_t LCDX, uint32_t LCDY>
    class glcdc_emu {
    public:
        static const uint32_t   width  = LCDX;
        static const uint32_t   height = LCDY;

    private:
        uint16_t fb_[LCDX * LCDY];

    public:

        void sync_vpos() { }

        void* get_fbp() { return fb_; }
    };
    typedef glcdc_emu<LCD_X, LCD_Y> GLCDC;

また、タッチクラスは、マウス入力をそのまま使うので、以下のようなクラスとした。

    class touch_emu {
    public:

        struct touch_t {
            vtx::spos   pos;
        };

    private:
        touch_t touch_[4];
        uint32_t    num_;

    public:
        touch_emu() : num_(0) { }

        uint32_t get_touch_num() const { return num_; }

        const auto& get_touch_pos(uint32_t idx) const {
            if(idx >= 4) idx = 0;
            return touch_[idx];
        }

        void update()
        {
        }

        void set_pos(const vtx::spos& pos)
        {
            touch_[0].pos = pos;
            num_ = 1;
        }

        void reset() { num_ = 0; }
    };

RX マイコンのサンプル「GUI_sample」を使って実験

※アプリケーションが出力する文字列を受け取り、ターミナルフレームに出力している。

これで、アプリの動作を細かく調整出来る。

GUI ビルダーも作る事が出来ると思うが、それはそれで、別の問題もある。
自分のフレームワークでは、widget の部品は、全てソースコードレベルで行っているので、ビルダーでソースコードを生成するのは簡単だが、その逆は、結構大変そうだ・・・
※一方通行で「ヨシ」とするなら簡単だが、ソースコードの管理が、それはそれで面倒・・
とりあえず、大がかかりになりそうなので、後で考える事にする・・・

何か作ってみる

とりあえず、簡単なところで、「電卓」を作ってみた、実用性もあるし、そこそこの難易度なので、それなりに有益かと思う。
もう少し、リッチなボタンが欲しいとこだが、それは、次の課題とする。
※現在の実装では、ボタンのコーナーのラウンドは、アンチエイリアスしていない。
また、プログラム電卓的な機能や、グラフ表示、など、拡張性がかなりあると思うので、今後機能を追加していこうと思う。

  • グラフ表示が出来る電卓は、購入するとなると、それなりの値段がするので、自分で作るには面白いガジェットかもしれない。
  • スマホで動く高機能な電卓が色々あるのだけど自分で作るのは、それだけで楽しい。

RX72N Envision Kit で動かした場合。


右の空きスペースは、関数電卓用のボタンを配置する予定。

とりあえず、PC で動作確認を行い、実際にターゲットでも同じように動作する事を確認できた。
今まで複雑な描画を含むアプリ作成は、効率が悪かったが、これからは、かなり効率良く開発出来ると思う。

CALC_sample

C++によるRXマイコンCANドライバー(その4)

不具合修正

不具合を修正してブラッシュアップした。

  • リモートフレームを受信しない不具合を修正
  • 複数メールボックス割り込みの修正
  • 拡張 ID 受信の不具合修正

通常モードでは、メールボックスのフラグ設定により、受信するメールボックスが決定する仕様のようだ・・・

  • メールボックスの「RTR」が「1」なら、リモートフレームを受信
  • メールボックスの「RTR」が「0」なら、データフレームを受信
  • メールボックスの「IDE」が「1」なら、拡張 ID フレームを受信
  • メールボックスの「IDE」が「0」なら、標準 ID フレームを受信

最低でも4つのメールボックスで「待ち」状態にしないと、全てを受信できない・・
また、先のバージョンでは、メールボックスに対する割り込みフラグが正しく設定されていないようだったので、それも修正した。
※割り込み受信処理中にも受信が可能なように、8つのメールボックスをアクティブにしている。

Start CAN sample for 'RX64M' 120[MHz]
CAN command version: 0.86
CAN0: SPEED: 1000000 [bps], BRP: 3, TSEG1: 12, TSEG2: 7, SJW: 4
    RX Interrupt level: 1, TX Interrupt level: 1
CAN1: SPEED: 1000000 [bps], BRP: 3, TSEG1: 12, TSEG2: 7, SJW: 4
    RX Interrupt level: 1, TX Interrupt level: 1
#
# ch 1
# send 0x123
# map
R      1 S:x0000123 (291)
ID = 1 / Total = 1, Records = 0, Df = 0, Rf = 1
# send_loop 50
# map
D      1 S:x0000079 (121)
D      1 S:x00002B2 (690)
D      1 S:x00001C8 (456)

...

D      1 S:x000014E (334)
D      1 S:x000028C (652)
R      1 S:x0000123 (291)
D      1 S:x00002CB (715)
D      1 S:x00002BD (701)
D      1 S:x000000C (12)

...

D      1 S:x00000DB (219)
ID = 49 / Total = 51, Records = 204, Df = 48, Rf = 1
#
# dump 0x123
R      1 S:x0000123 (291)
R: ID: std 0x123 (291)
(0):
TS: 47248
# dump 219
D      1 S:x00000DB (219)
D: ID: std 0x0DB (219)
(2): D8 68
TS: 22193

リモートフレーム、データフレームの扱いについて、理解したので、表示も修正した。
※send 時、ID だけ設定するとリモートフレームを送信するようになっている。

RX66T の CAN ポート設定

RX66T では、CAN は1チャネルのみだが、候補が7番まであるので、それに伴って、port_map クラスを修正した。

        static bool sub_can_(option opt, bool enable)
        {
            uint8_t sel = enable ? 0b10000 : 0;
            switch(opt) {
            case option::FIRST:
                // PE0/CRX0 (22/144) 1ST
                // PD7/CTX0 (23/144)
                PORTE::PMR.B0 = 0;
                PORTD::PMR.B7 = 0;
                MPC::PE0PFS.PSEL = sel;
                MPC::PD7PFS.PSEL = sel;
                PORTE::PMR.B0 = enable;
                PORTD::PMR.B7 = enable;
                break;
            case option::SECOND:
                // PF3/CRX0 (31/144) 2ND
                // PF2/CTX0 (32/144)
                PORTF::PMR.B3 = 0;
                PORTF::PMR.B2 = 0;
                MPC::PF3PFS.PSEL = sel;
                MPC::PF3PFS.PSEL = sel;
                PORTF::PMR.B3 = enable;
                PORTF::PMR.B2 = enable;
                break;
            case option::THIRD:
                // PB6/CRX0 (40/144) 3RD
                // PB5/CTX0 (41/144)
                PORTB::PMR.B6 = 0;
                PORTB::PMR.B5 = 0;
                MPC::PB6PFS.PSEL = sel;
                MPC::PB5PFS.PSEL = sel;
                PORTB::PMR.B6 = enable;
                PORTB::PMR.B5 = enable;
                break;
            case option::FOURTH:
                // PA7/CRX0 (52/144) 4TH
                // PA6/CTX0 (53/144)
                PORTA::PMR.B7 = 0;
                PORTA::PMR.B6 = 0;
                MPC::PA7PFS.PSEL = sel;
                MPC::PA6PFS.PSEL = sel;
                PORTA::PMR.B7 = enable;
                PORTA::PMR.B6 = enable;
                break;
            case option::FIFTH:
                // PA1/CRX0 (58/144) 5TH
                // PA0/CTX0 (59/144)
                PORTA::PMR.B1 = 0;
                PORTA::PMR.B0 = 0;
                MPC::PA1PFS.PSEL = sel;
                MPC::PA0PFS.PSEL = sel;
                PORTA::PMR.B1 = enable;
                PORTA::PMR.B0 = enable;
                break;
            case option::_6TH:
                // PC6/CRX0 (62/144) 6TH
                // PC5/CTX0 (63/144)
                PORTC::PMR.B6 = 0;
                PORTC::PMR.B5 = 0;
                MPC::PC6PFS.PSEL = sel;
                MPC::PC5PFS.PSEL = sel;
                PORTC::PMR.B6 = enable;
                PORTC::PMR.B5 = enable;
                break;
            case option::_7TH:
                // P23/CTX0 (96/144) 7TH
                // P22/CRX0 (97/144)
                PORT2::PMR.B3 = 0;
                PORT2::PMR.B2 = 0;
                MPC::P23PFS.PSEL = sel;
                MPC::P22PFS.PSEL = sel;
                PORT2::PMR.B3 = enable;
                PORT2::PMR.B2 = enable;
                break;
            default:
                return false;
            }
            return true;
        }

有効な ID だけ通すフィルター

can_io クラスでは、フィルター機能を使っていない。
RX マイコンの CAN では、フィルターの設定が面倒で、数に制限がある為、実際のアプリでは、適応するのが難しいかもしれない。

ハードウェアーの機能を使えば、処理負荷を軽減できるものの、実用性が怪しい、また、異なるハードウェアー(RSCAN)などで、コードの再利用が難しくなる。

C++ では、特定の ID だけ通す(通さない)フィルターを簡単に実装出来る。
今回「boost::unordered_set」を使った。
※「std::unorderd_set」よりバイナリーが小さくなる。

まず、通すリストを構築する。

    // 有効な ID だけ通すフィルター
    typedef boost::unordered_set<uint32_t> VALID;
    VALID   valid_{ 0x123, 0x200, 0x300, 0xaaa, 15, 21, 33 };

非常に簡単だw

次に、メインループで、受信したフレームをディスパッチする際に、上記フィルターがヒットするか確認する。

        while(can1_.get_recv_num() > 0) {
            auto frm = can1_.get_recv_frame();
            if(valid_.find(frm.get_id()) != valid_.end()) {
                utils::format("\nCAN1:\n");
                CAN::list(frm, "  ");
            }
        }

この場合、CAN1 に受信したフレームで、「有効」な ID だけ表示する。

# send 0x123 0
CAN1:
  D: ID: std 0x123 (291)
  (1): 00
  TS: 29604
#
# send 0x1 1 2 3
# send 200 5 6 7
# send 0x200 5 6 7
#
CAN1:
  D: ID: std 0x200 (512)
  (3): 05 06 07
  TS: 41568
#

「unorderd_set」は、ハッシュを使って効率よく探すので、探す ID が多くても、検索にかかる負荷は小さくて済むものと思う。
また、「通す ID」を追加したり、削除したりも簡単に出来る。

今回はここまで。

C++によるRXマイコンCANドライバー(その3)

複数メールボックスの利用

以前の実装では、送信も受信も1つのメールボックスを使っていたが、少なくとも「受信」では、1つの受信時、割り込み処理で、メールボックスから、フレームを取り出してバッファに積む間に、別の ID を受信していると、そのフレームをロストしてしまう。
そこで、複数のメールボックスを利用するように修正した。

送信側も複数のメールボックスを利用するように修正。

can_io テンプレートのプロトタイプは以下のようになった。

    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    /*!
        @brief  CAN 制御クラス
        @param[in]  CAN     CAN 定義クラス
        @param[in]  RBF     受信バッファクラス (utils::fixed_fifo<can_frame, N>)
        @param[in]  TBF     送信バッファクラス (utils::fixed_fifo<can_frame, N>)
        @param[in]  PSEL    ポート候補
    */
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
    template <class CAN, class RBF, class TBF, port_map::option PSEL = port_map::option::FIRST>
    class can_io : public can_io_def {

アプリケーションからは、以下のように「typedef」して使う。

    // CAN 受信バッファの定義
    typedef utils::fixed_fifo<device::can_frame, 256> CAN_RXB;
    // CAN 送信バッファの定義
    typedef utils::fixed_fifo<device::can_frame, 128> CAN_TXB;

    typedef device::can_io<device::CAN0, CAN_RXB, CAN_TXB, CAN0_PORT> CAN0;
    CAN0    can0_;

CAN/ID の収集と解析

とりあえず、「can_io」クラスは、送信、受信が行えるようになったので、CAN バスの解析機能を実装してみた。

新規に「can_analize」テンプレートクラスを追加して、内部で、CAN/ID を動的に収集して、表示する。

ID の収集には、「boost/unordered_map.hpp」を利用したが、標準で用意されている「std::unordered_map」は、関連クラスの関係でリンクが難しい事が判った為だ。
boost の方が小回りが利く。
※この利用では、何故か、浮動小数点ライブラリをリンクする必要があるようだ・・・

ID を動的にソートして収集するには「std::map」が良いが、「std::map」は、ツリー式で、件数が増えるとメモリの肥大化が問題になると思われる。
※計測はしていないが、経験的にハッシュを使う「unordered_map」の方が高速で省メモリなのではと思う。
※使用メモリも、件数によると思う、これも調査していないので何とも言えない。
※また、たとえば、車の CAN、工作機械などの CAN などで、標準的に利用している ID の数も、今はまだ理解していない。
※コード的には、コンテナの扱いが同等なので、どちらでも利用出来る。

        typedef boost::unordered_map<uint32_t, info_t> MAP;
//      typedef std::map<uint32_t, info_t> MAP;
  • どちらかを有効にする。
  • 実行ファイルは、「std::map」の方が若干大きくなる。

解析機能は、CAN0 側にのみ付けているので(両方付ける事も出来る)、ループ接続で実験する際は、CAN1 側から送信する必要がある。


これらの機能実装は、C++ ならではで、組み込みマイコンでも、boost がまともに動くのは、便利としか言いようが無いw

送信と受信の様子:

Start CAN sample for 'RX64M' 120[MHz]
CAN0: SPEED: 1000000 [bps], BRP: 3, TSEG1: 12, TSEG2: 7, SJW: 4
    RX Interrupt level: 1, TX Interrupt level: 1
CAN1: SPEED: 1000000 [bps], BRP: 3, TSEG1: 12, TSEG2: 7, SJW: 4
    RX Interrupt level: 1, TX Interrupt level: 1
# ch 1
# send 0x100 1 2 3
# map
     1 S:x0000100 (256)
Total = 1
# dump 256
     1 S:x0000100 (256)
ID: std 0x100 (256)
DATA(3): 01 02 03
TS: 11269
# send 123 5 6 7
# send 500 67 90 200
# send 300 100 99 100
# map
     1 S:x000012C (300)
     1 S:x00001F4 (500)
     1 S:x000007B (123)
     1 S:x0000100 (256)
Total = 4
# dump 500
     1 S:x00001F4 (500)
ID: std 0x1F4 (500)
DATA(3): 43 5A C8
TS: 14498
# send 500 0x8A 0xcb 0xfe 0x24
# map
     1 S:x000012C (300)
     2 S:x00001F4 (500)
     1 S:x000007B (123)
     1 S:x0000100 (256)
Total = 4
# dump 500
     2 S:x00001F4 (500)
ID: std 0x1F4 (500)
DATA(4): 8A CB FE 24
TS: 9925
#

「send_loop」コマンドを追加。
ランダムなデータを送信するテストを行った:

# ch 1
# send_loop 100
# map
     1 S:x00002A4 (676)
     1 S:x0000301 (769)

...

     1 S:x000013D (317)
     2 S:x0000260 (608)
     1 S:x0000015 (21)
     1 S:x000031D (797)
     1 S:x00000D6 (214)
     1 S:x0000228 (552)
Total ID = 92 / Total count = 100, Total Record = 367
# send_loop 100
# map
     1 S:x000008A (138)
     1 S:x000026E (622)
     1 S:x0000028 (40)
     1 S:x0000116 (278)
     1 S:x00001BD (445)
     1 S:x00001AC (428)

...

     2 S:x00000F7 (247)
     1 S:x00000DB (219)
     1 S:x000013D (317)
     1 S:x00002E9 (745)
     1 S:x00000A6 (166)
     1 S:x0000228 (552)
Total ID = 170 / Total count = 200, Total Record = 678
# send_loop 50
# map
     1 S:x000012E (302)
     1 S:x00000C8 (200)
     1 S:x0000070 (112)
     1 S:x0000077 (119)
     1 S:x00000DA (218)

...

     2 S:x00000F7 (247)
     1 S:x000013D (317)
     1 S:x00002E9 (745)
     1 S:x0000228 (552)
Total ID = 210 / Total count = 250, Total Record = 853
#

とりあえず、ちゃんと動いているようだ。

    ch CH-no               set current CAN channel (CH-no: 0, 1)
    send CAN-ID [data...]  send data frame
    stat MB-no             stat mail-box (MB-no: 0 to 31)
    list MB-no             list mail-box (MB-no: 0 to 31)
    map [CAN-ID]           Display all collected IDs
    clear                  clear map
    dump CAN-ID            dump frame data
    send_loop NUM          random ID, random DATA, send loop
    help                   command list (this)

新しいコマンドを追加したサンプルはプッシュ済み

今回はここまで。