2021年、扇山登山、その1

今年初めての登山

自宅から「扇山」山頂(1138m)へは直線距離で約3.5キロ、結構近いが、上れば往復6時間くらいかかる。

自宅からは、宮谷地区からの登山道を利用する事になるが、使う人がほとんどいない為、整備がされておらず、かなり荒れている。
それに、かなり大回りしなくてはならない・・

かと言って、鳥沢駅や、猿橋駅方向からだと、遠回りでもあるし、時間がかかり過ぎる。

そこで、最短ルートで登れそうな経路で登る、「アドベンチャースタイル」w、を開拓しつつある。
道は険しいが、登山道と違って面白味があるし、同じルートを通らないので、毎回新鮮だ。

この方法は、5回くらい、色々なルートで登って、「何とかなる」と思えるようになった。

今回は、新規ルート、事前に等高線を調べて考えたルートで登り、ほぼ同じルートで降りてきた。
※上りは3時間、下りは2時間30分くらい。

上りは意外と簡単だが、下りは難しく、稜線に沿って下りていると思っても、いつのまにかルートから外れて、急な斜面を降りていたりするので、細心の注意が必要となる。
間違ったルートを一旦下りてしまうと、登る事も降りる事も出来ないような、緊急事態になったりする。
※以前にそれで、崖から転落するとこだった・・
※砂防ダムも注意が必要で、絶対に小川を下りてはいけない事を悟った。

宮谷からの上り口

稜線はいくつもあるが、急過ぎて使えない場合や、生えている木の種類、倒木、岩の状態など、難易度が異なる。
また、最初はなだらかでも、途中で急こう配で登れない場合もある。(迂回も出来ない)
※2月頃、プレ登山で状況をある程度確認しておいた。

登山道からU字溝が見える場所から入っていく。
この辺りは、植林された木々で、作業用の道らしきものがあるので、それに沿って上っていく。
途中から稜線に沿って登っていく。

多分ルートは、上のようなもので、途中、急こう配があるが、それをクリアすれば、稜線に沿って登っていける。
1109mの処に合流しれば、通常の登山道となる。
ここまで来れば、整備されていて、登山客も多い。
この「赤い」ルートは単に稜線に沿って登るだけの簡易的なルートだが、所々、ピンクのテープが巻いてあるので、以前に誰かが上った事があるものと思う。
ルートには動物の糞(鹿や小動物?)や足跡がある、最近は、それが新しいのか古いのかが判るようになってきた。







写真で見える景色は、普通に見えるが、斜度はそこそこあり、登りは結構厳しい!

下りのルート選び

登山道では無い、稜線を下るのは、標高が高いと、道が狭く、他にルートは無いので、単純で簡単だが、降りるにしたがって勾配が緩くなると、行ける範囲が広がり、選択枠が多くなる。
そうすると、思ってもしない方向に行ってしまう事が起こる、それを補正しながら慎重に下っていく。

iPhone アプリ「ジオグラフィカ」を使い、ルートを外れていないか確認しながら降りていく。(このアプリ、非常に便利)

途中、間違ったルートを下りて登ってをしたが(ロスは100mくらい?)、無事に宮谷の登山道まで降りてこれた。

富士山は、途中見えていたが、山頂に付いた頃(お昼)にはガスって見えなかった。

多分、今までで一番速い。

それでも、6時間近く歩いたので、ヘロヘロになっていた、2日くらい筋肉痛だった・・

このルートは、中々面白いので、もう一回くらいは挑戦してみたい。
iPhoneの助けを借りずに、降りてこられたら、文句は無い。

RX72Tを動かしてみる

RX72T

以前、RX72M 発表の際、デバイス単体で購入すべく、色々探して、最短で入手できる(マウサー)処から購入した。
その時、RX72T も販売していたので割高だったけど「ついでに」購入していた。

144ピンタイプで、変換基板が手元に無く、動かせていなかったが、変換基板を入手したので、動かしてみた。

RX72T は最大 200MHz で動作し、標準で USB を内蔵しており、エアコンなど家電向けのデバイスとなっている。
自分が買った時は、1500 円くらいだったと思うが、現在は 1000 円くらい( 100 ピンタイプ)で入手出来るようだ、RX66T と余り変わらない・・
※ RX66T は入手性が悪い。

チップワンストップ(RX72T)

基本的なスペック:

  • 3.3V~5V 動作
  • RXv3 コア
  • 最大 200MHz 動作
  • ROM (512K/1024K)
  • RAM 128KB
  • データフラッシュ 32KB
  • ECC 付 RAM 16KB
  • USB 内臓

※RXv3 コアだけど、DFPU はサポートしていない。


基本的なピン接続

最低限必要なピンだけ配線して、動作させた。
※自分はシリアル接続を基本としているので、SCI ブートモードを利用する。

ピン番は144ピンタイプのデバイスなので注意

ピン名 ピン番 通常動作 ブート時
MD/FINED 11 PU(1) PD(0)
P00/UB 9 PD(0) PD(0)
PD5/RXD1 25 TXD TXD
PD3/TXD1 27 RXD RXD
EMLE 7 PD(0) PD(0)
/RES 15 PU(1) PU(1)
P37/XTAL 16 16MHz 16MHz
P36/EXTAL 18 16MHz 16MHz
VCL 10 0.47uF 0.47uF

PD: プルダウン (4.7K)
PU: プルアップ (4.7K)
Vcc、Vss を全て接続して、バイパスコンデンサ(0.1uF)を接続する。
AVcc、AVss も同様に接続。
※ A/D変換で SN を上げる為には、アナログ系の電源に工夫をする必要がある。

  • 動作レベル設定では、直で Vcc、Vss に接続しない事、必ず適当な抵抗を介して接続する。(入出力の場合がある)
  • VCL は 0.47uF のセラミックコンデンサで Vss に接続。
  • クリスタルは 16MHz を選んだ。(共振コンデンサは、8pF)
  • 「/RES」にはリセット SW を設ける。
  • USB ブートの場合は、「P00/UB」端子を「High」とする。

詳しくは、「RX72Tグループ ユーザーズマニュアル ハードウェア編」、「45. フラッシュメモリ」、「45.7.1 ブートモード (SCI インタフェース )」を参照


RX72T 対応サンプルコード

USER_DEFS   =   SIG_RX72T \
                F_ICLK=192000000 \
                F_PCLKA=96000000 F_PCLKB=48000000 F_PCLKC=192000000 F_PCLKD=48000000 \
                F_FCLK=48000000 F_BCLK=48000000

RX72N 対応の時、RX72T も大体対応していたと思うので、FIRST_sample は普通に動作した。
※RX72T は、RX72N より、RX66T に仕様が近い。

#elif defined(SIG_RX72T)
    static const char* system_str_ = { "RX72T" };
    typedef device::system_io<16'000'000, 192'000'000> SYSTEM_IO;
    typedef device::PORT<device::PORT0, device::bitpos::B1> LED;
    typedef device::SCI1 SCI_CH;

FIRST_sample では、LED は P00 に接続するのが通例だったが、P00 は USB ブート時のサイン入力なので避け、P01 にしてある。

クリスタルは、USB 使用時は 192MHz 動作が必要で、USB を使わない最大速度 200MHz も可能なように 16MHz を選択した。

ソフトウェアーループの遅延を調整した。

    static void micro_second(uint32_t us)
        {
            while(us > 0) {

...

#elif defined(SIG_RX72T)
                // 192MHz: 250KHz: (63) 3008239 -> 253.304KHz
                // 192MHz: 250KHz: (64) 3000000 -> 249.357KHz
                for(uint32_t n = 0; n < (F_ICLK / 3000000); ++n) {
                    asm("nop");
                }

...

SCI_sample を試したら、上手く通信出来ない・・
調べると、通信速度が半分になっていた。
最初、クロックデバイダの不具合なのかと思い、system_io クラスを調べたが問題無い。

原因は、sci_io クラスで、ボーレートクロックを微調整するパラメーターの問題だった。
「微調整機構 (MDDR)」では、全体のボーレートを、n/256 で微調整する。
誤差が、1/256 以下の場合(誤差 0.39% 以下)の場合、微調整をバイパスする必要がある。

if(mddr >= 128) brme = true;

mddr は、誤差が0の場合、256 が来る、それで、MDDR には「0」が設定されてしまう・・・

以下のように修正した。

if(mddr >= 128 && mddr < 256) brme = true;

結構、実装には自信があったクラスだけに多少ショックを受けている・・、まだまだだなーと思う瞬間だった・・

ついでに、ボーレートクロックの精度を高めるようなコードを追加した。


現状でサポートして動作確認したサンプルは以下のようになっている。

  • FIRST_sample
  • SCI_sample
  • RAYTRACER_sample
  • CALC_sample

フラッシュ書き込みプログラム「rx_prog」は対応済みで、問題無く書き込めた。

まとめ

RX72T はチップ単体の価格が1000円くらいでありながら、極めて高性能で、それなりに RAM もあるので、小物を作る際には重宝しそうなデバイスだと思う。

5V でも動作して、200MHz で動くのは、それなりにメリットがあるものと思う。
USB も標準で持っているので、PC に接続するようなデバイスを作成する場合にも便利そうだー

今後、サンプルコード対応をしていく。

通路に石板を敷く(リホーム)

通路を整備

玄関横に、60センチくらいの隙間がある。
正面の門を通らないで、駐車スペースから玄関へ出入りが出来るので、通り道になっている。

ここは、拳くらいの石ころがあり、ベースが土なので、これから暖かくなると雑草が生えてくるし、デコボコして歩きづらい。

前から何とかしたいと思っていたが、中々行動出来なかった、最近凄く暖かくなったので、材料を買って作業をした。

材料

  • 石の板、30センチ四方で4センチくらい、1枚220円くらい(合計18枚)
  • 砂(20Kg、2袋)
  • 小玉石(20Kg、1袋)

作業

石や、土をどけて、石板が横のコンクリと面一になるようにした。
数センチ掘るだけだが、思った以上に大量の土と石が出た。
これは、とりあえず、庭の隅に運んだ、後で、石ころを除いて、土は、山に捨てにいく。

石板の高さは、下に砂を敷いて高さ調整をした。
※思った以上に大量の砂を使う・・(20Kgが2袋でも多少足りない・・)
本来、水糸を引いて、高さの基準を出しておき、そこを基準に高さ調整すべきだが、適当に見た目でやったので、かなり上下がある。
これは、後々改修しようと思う。

石板を並べると、最後の2枚は長すぎなので、6センチ程短くした。
1枚は急ぎすぎて失敗し、端を割ってしまった・・・

割りたい場所、裏表で、数ミリ溝を作り、そこを集中して叩くと、応力が集中して、そこからうまい具合に割れる。
少しだけ、大きすぎだったので、少しづつ削って整えた。

壁との隙間には、「小玉石」で埋めるつもりだが、全体の高さが合っていないので、それを修正してからにする。